library(ggplot2) #Age Fiji age_values_fiji = seq(min(Data$Age[Data$Pays == "Fiji"]), max(Data$Age[Data$Pays == "Fiji"]), by = 0.1) #Age Swaziland age_values_Swaziland = seq(min(Data$Age[Data$Pays == "Swaziland"]), max(Data$Age[Data$Pays == "Swaziland"]), by = 0.1) #Determine AIC le plus petit =================================================== #Fiji garcon for (i in c(1:25)) { print(AIC(lm(Taille ~ poly(Age, i), data = subset(Data, Sexe == "Boys" & Pays == "Fiji")))) } preticted_height_boys_fiji1 = predict(lm(Taille ~ poly(Age, 1), data = subset(Data, Sexe == "Boys" & Pays == "Fiji")), newdata = data.frame(Age = age_values_fiji)) preticted_height_boys_fiji2 = predict(lm(Taille ~ poly(Age, 2), data = subset(Data, Sexe == "Boys" & Pays == "Fiji")), newdata = data.frame(Age = age_values_fiji)) preticted_height_boys_fiji3 = predict(lm(Taille ~ poly(Age, 4), data = subset(Data, Sexe == "Boys" & Pays == "Fiji")), newdata = data.frame(Age = age_values_fiji)) preticted_height_boys_fiji4 = predict(lm(Taille ~ poly(Age, 6), data = subset(Data, Sexe == "Boys" & Pays == "Fiji")), newdata = data.frame(Age = age_values_fiji)) #Fiji fille for (i in c(1:25)) { print(AIC(lm(Taille ~ poly(Age, i), data = subset(Data, Sexe == "Girls" & Pays == "Fiji")))) } preticted_height_girls_fiji1 = predict(lm(Taille ~ poly(Age, 1), data = subset(Data, Sexe == "Girls" & Pays == "Fiji")), newdata = data.frame(Age = age_values_fiji)) preticted_height_girls_fiji2 = predict(lm(Taille ~ poly(Age, 2), data = subset(Data, Sexe == "Girls" & Pays == "Fiji")), newdata = data.frame(Age = age_values_fiji)) preticted_height_girls_fiji3 = predict(lm(Taille ~ poly(Age, 4), data = subset(Data, Sexe == "Girls" & Pays == "Fiji")), newdata = data.frame(Age = age_values_fiji)) preticted_height_girls_fiji4 = predict(lm(Taille ~ poly(Age, 6), data = subset(Data, Sexe == "Girls" & Pays == "Fiji")), newdata = data.frame(Age = age_values_fiji)) #Swaziland garcon for (i in c(1:25)) { print(AIC(lm(Taille ~ poly(Age, i), data = subset(Data, Sexe == "Boys" & Pays == "Swaziland")))) } preticted_height_boys_Swaziland1 = predict(lm(Taille ~ poly(Age, 1), data = subset(Data, Sexe == "Boys" & Pays == "Swaziland")), newdata = data.frame(Age = age_values_Swaziland)) preticted_height_boys_Swaziland2 = predict(lm(Taille ~ poly(Age, 2), data = subset(Data, Sexe == "Boys" & Pays == "Swaziland")), newdata = data.frame(Age = age_values_Swaziland)) preticted_height_boys_Swaziland3 = predict(lm(Taille ~ poly(Age, 5), data = subset(Data, Sexe == "Boys" & Pays == "Swaziland")), newdata = data.frame(Age = age_values_Swaziland)) preticted_height_boys_Swaziland4 = predict(lm(Taille ~ poly(Age, 7), data = subset(Data, Sexe == "Boys" & Pays == "Swaziland")), newdata = data.frame(Age = age_values_Swaziland)) #Swaziland fille for (i in c(1:25)) { print(AIC(lm(Taille ~ poly(Age, i), data = subset(Data, Sexe == "Girls" & Pays == "Swaziland")))) } preticted_height_girls_Swaziland1 = predict(lm(Taille ~ poly(Age, 1), data = subset(Data, Sexe == "Girls" & Pays == "Swaziland")), newdata = data.frame(Age = age_values_Swaziland)) preticted_height_girls_Swaziland2 = predict(lm(Taille ~ poly(Age, 2), data = subset(Data, Sexe == "Girls" & Pays == "Swaziland")), newdata = data.frame(Age = age_values_Swaziland)) preticted_height_girls_Swaziland3 = predict(lm(Taille ~ poly(Age, 4), data = subset(Data, Sexe == "Girls" & Pays == "Swaziland")), newdata = data.frame(Age = age_values_Swaziland)) preticted_height_girls_Swaziland4 = predict(lm(Taille ~ poly(Age, 5), data = subset(Data, Sexe == "Girls" & Pays == "Swaziland")), newdata = data.frame(Age = age_values_Swaziland)) #Nuage de points des garcon ==================================================== garcon <- Data[Data$Sexe == "Boys",] #Nuage pays confondus ggplot(garcon) + aes(x = Age, y = Taille) + geom_point(shape = "bullet",size = 1.5) + theme_minimal() + theme(plot.title = element_text(size = 20L, hjust = 0.5)) + labs(title = "Repartition de la taille en fonction de l'âge chez les garçons", x = "Age (en années décimales)", y = "Taille (en cm)") #Couleur ggplot(garcon) + aes(x = Age, y = Taille, colour = Pays) + geom_point(shape = "bullet",size = 1.5) + scale_color_manual( values = c(Fiji = "#5DA5DA", Swaziland = "#F15854")) + theme_minimal() + theme(plot.title = element_text(size = 20L, hjust = 0.5)) + labs(title = "Repartition de la taille en fonction de l'age et par pays chez les garçons", x = "Age (en années décimales)", y = "Taille (en cm)") #boite à moustache p<-ggplot(garcon, aes(y=Taille, fill=Pays)) + geom_boxplot() + scale_fill_manual(values=c(Fiji = "#5DA5DA", Swaziland = "#F15854")) + ggtitle("Répartion de la taille par pays chez les garçons") + theme_minimal() p #Classe d'age garcon$categ_age <- cut(garcon$Age, breaks = c(5,8,11,14,17,max(garcon$Age))) Taille_Q1_garcon <- aggregate(garcon$Taille, by = list(garcon$categ_age), FUN = "quantile", probs = 0.25) Taille_Median_garcon <- aggregate(garcon$Taille, by = list(garcon$categ_age), FUN = "quantile", probs = 0.5) Taille_Q3_garcon <- aggregate(garcon$Taille, by = list(garcon$categ_age), FUN = "quantile", probs = 0.75) Taille_Q1_garcon$Group.1 <- c(6.5, 9.5, 12.5, 15.5,18) Taille_Median_garcon$Group.1 <- c(6.5, 9.5, 12.5, 15.5,18) Taille_Q3_garcon$Group.1 <- c(6.5, 9.5, 12.5, 15.5,18) ggplot(garcon) + aes(x = Age, y = Taille) + geom_point(shape = 'bullet', size = 1.5, color = "gray52") + theme_minimal() + theme(plot.title = element_text(size = 20L, hjust = 0.5)) + geom_line(data = Taille_Q1_garcon, aes(x = Group.1, y = x), col = "dodgerblue3", lwd = 1) + geom_line(data = Taille_Median_garcon, aes(x = Group.1, y = x), col = "firebrick1", lwd = 1) + geom_line(data = Taille_Q3_garcon, aes(x = Group.1, y = x), col = "darkgreen", lwd = 1) + labs(title = "Observation du 1er, 3eme quartile et de la médiane des tailles chez les garçons", x = "Age (en années décimales)", y = "Taille (en cm)") p<-ggplot(garcon, aes(y=Taille, fill = Sexe)) + geom_boxplot() + scale_fill_manual(values=c(Boys = "cyan")) + ggtitle("Répartion de la taille par pays chez les garçons") + theme_minimal() p #Classe d'age par pays garcon_Fiji <- garcon[garcon$Pays == "Fiji",] garcon_Swaziland <- garcon[garcon$Pays == "Swaziland",] garcon_Fiji$categ_age <- cut(garcon_Fiji$Age, breaks = c(5,8,11,14,17,max(garcon_Fiji$Age))) Taille_Q1_garcon_Fiji <- aggregate(garcon_Fiji$Taille, by = list(garcon_Fiji$categ_age), FUN = "quantile", probs = 0.25) Taille_Median_garcon_Fiji <- aggregate(garcon_Fiji$Taille, by = list(garcon_Fiji$categ_age), FUN = "quantile", probs = 0.5) Taille_Q3_garcon_Fiji <- aggregate(garcon_Fiji$Taille, by = list(garcon_Fiji$categ_age), FUN = "quantile", probs = 0.75) Taille_Q1_garcon_Fiji$Group.1 <- c(6.5, 9.5, 12.5, 15.5,18) Taille_Median_garcon_Fiji$Group.1 <- c(6.5, 9.5, 12.5, 15.5,18) Taille_Q3_garcon_Fiji$Group.1 <- c(6.5, 9.5, 12.5, 15.5,18) ggplot(garcon_Fiji) + aes(x = Age, y = Taille) + geom_point(shape = 'bullet', size = 1.5, color = "gray52") + theme_minimal() + theme(plot.title = element_text(size = 20L, hjust = 0.5)) + geom_line(data = Taille_Q1_garcon_Fiji, aes(x = Group.1, y = x), col = "dodgerblue3", lwd = 1) + geom_line(data = Taille_Median_garcon_Fiji, aes(x = Group.1, y = x), col = "firebrick1", lwd = 1) + geom_line(data = Taille_Q3_garcon_Fiji, aes(x = Group.1, y = x), col = "darkgreen", lwd = 1) + labs(title = "Observation des écarts de tailles chez les garçons des Fidji (quartile)", x = "Age (en années décimales)", y = "Taille (en cm)") garcon_Swaziland$categ_age <- cut(garcon_Swaziland$Age, breaks = c(5,8,11,14,17,max(garcon_Swaziland$Age))) Taille_Q1_garcon_Swaziland <- aggregate(garcon_Swaziland$Taille, by = list(garcon_Swaziland$categ_age), FUN = "quantile", probs = 0.25) Taille_Median_garcon_Swaziland <- aggregate(garcon_Swaziland$Taille, by = list(garcon_Swaziland$categ_age), FUN = "quantile", probs = 0.5) Taille_Q3_garcon_Swaziland <- aggregate(garcon_Swaziland$Taille, by = list(garcon_Swaziland$categ_age), FUN = "quantile", probs = 0.75) Taille_Q1_garcon_Swaziland$Group.1 <- c(6.5, 9.5, 12.5, 15.5,18) Taille_Median_garcon_Swaziland$Group.1 <- c(6.5, 9.5, 12.5, 15.5,18) Taille_Q3_garcon_Swaziland$Group.1 <- c(6.5, 9.5, 12.5, 15.5,18) ggplot(garcon_Swaziland) + aes(x = Age, y = Taille) + geom_point(shape = 'bullet', size = 1.5, color = "gray52") + theme_minimal() + theme(plot.title = element_text(size = 20L, hjust = 0.5)) + geom_line(data = Taille_Q1_garcon_Swaziland, aes(x = Group.1, y = x), col = "dodgerblue3", lwd = 1) + geom_line(data = Taille_Median_garcon_Swaziland, aes(x = Group.1, y = x), col = "firebrick1", lwd = 1) + geom_line(data = Taille_Q3_garcon_Swaziland, aes(x = Group.1, y = x), col = "darkgreen", lwd = 1) + labs(title = "Observation des écarts de tailles chez les garçons de l'Eswatini (quartile)", x = "Age (en années décimales)", y = "Taille (en cm)") ggplot(garcon) + aes(x = Age, y = Taille) + geom_point(shape = 'bullet', size = 1.5, color = "gray52") + theme_minimal() + theme(plot.title = element_text(size = 20L, hjust = 0.5)) + geom_line(data = Taille_Q1_garcon_Fiji, aes(x = Group.1, y = x), col = "blue", lwd = 1) + geom_line(data = Taille_Q3_garcon_Swaziland, aes(x = Group.1, y = x), col = "red", lwd = 1) + labs(title = "Comparaison des tailles du 1er quartile chez les fidjiens \net 3ème quartile chez les swazis", x = "Age (en années décimales)", y = "Taille (en cm)") #model predictif ggplot(garcon_Fiji) + aes(x = Age, y = Taille, colour = Pays) + geom_point(shape = "bullet", size = 1.5) + scale_color_manual( values = c(Fiji = "#5DA5DA")) + theme_minimal() + theme(plot.title = element_text(size = 20L, hjust = 0.5)) + geom_line(data = data.frame(age_values_fiji, preticted_height_boys_fiji1), aes(x = age_values_fiji, y = preticted_height_boys_fiji1), col = "red", lwd = 1) + geom_line(data = data.frame(age_values_fiji, preticted_height_boys_fiji2), aes(x = age_values_fiji, y = preticted_height_boys_fiji2), col = "purple", lwd = 1) + geom_line(data = data.frame(age_values_fiji, preticted_height_boys_fiji3), aes(x = age_values_fiji, y = preticted_height_boys_fiji3), col = "orange", lwd = 1) + geom_line(data = data.frame(age_values_fiji, preticted_height_boys_fiji4), aes(x = age_values_fiji, y = preticted_height_boys_fiji4), col = "green", lwd = 1) + labs(title = "modèles predictifs sur la taille des garçons des Fidji en fonction de l'âge", x = "Age (en années décimales)", y = "Taille (en cm)") ggplot(garcon_Swaziland) + aes(x = Age, y = Taille, colour = Pays) + geom_point(shape = "bullet", size = 1.5) + scale_color_manual( values = c(Swaziland = "#F15854")) + theme_minimal() + theme(plot.title = element_text(size = 20L, hjust = 0.5)) + geom_line(data = data.frame(age_values_Swaziland, preticted_height_boys_Swaziland1), aes(x = age_values_Swaziland, y = preticted_height_boys_Swaziland1), col = "blue", lwd = 1) + geom_line(data = data.frame(age_values_Swaziland, preticted_height_boys_Swaziland2), aes(x = age_values_Swaziland, y = preticted_height_boys_Swaziland2), col = "purple", lwd = 1) + geom_line(data = data.frame(age_values_Swaziland, preticted_height_boys_Swaziland3), aes(x = age_values_Swaziland, y = preticted_height_boys_Swaziland3), col = "black", lwd = 1) + geom_line(data = data.frame(age_values_Swaziland, preticted_height_boys_Swaziland4), aes(x = age_values_Swaziland, y = preticted_height_boys_Swaziland4), col = "green", lwd = 1) + labs(title = "modèles predictifs sur la taille des garçons de l'Eswatini en fonction de l'âge", x = "Age (en années décimales)", y = "Taille (en cm)") #Nuage de points filles ======================================================== fille <- Data[Data$Sexe == "Girls",] #Nuage pays confondus ggplot(fille) + aes(x = Age, y = Taille) + geom_point(shape = "bullet",size = 1.5) + theme_minimal() + theme(plot.title = element_text(size = 20L, hjust = 0.5)) + labs(title = "Repartition de la taille en fonction de l'âge chez les filles", x = "Age (en années décimales)", y = "Taille (en cm)") #Nuages avec pays en couleurs ggplot(fille) + aes(x = Age, y = Taille, colour = Pays) + geom_point(shape = "bullet",size = 1.5) + scale_color_manual( values = c(Fiji = "darkorchid", Swaziland = "darkolivegreen3")) + theme_minimal() + theme(plot.title = element_text(size = 20L, hjust = 0.5)) + labs(title = "Repartition de la taille en fonction de l'âge et par pays chez les filles", x = "Age (en années décimales)", y = "Taille (en cm)") #boite à moustache p<-ggplot(fille, aes(y=Taille, fill=Pays)) + geom_boxplot() + scale_fill_manual(values=c(Fiji = "darkorchid", Swaziland = "darkolivegreen3")) + ggtitle("Répartion de la taille par pays chez les filles") + theme_minimal() p #Classe d'age fille fille$categ_age <- cut(fille$Age, breaks = c(5,8,11,14,17,max(fille$Age))) Taille_Q1_fille <- aggregate(fille$Taille, by = list(fille$categ_age), FUN = "quantile", probs = 0.25) Taille_Median_fille <- aggregate(fille$Taille, by = list(fille$categ_age), FUN = "quantile", probs = 0.5) Taille_Q3_fille <- aggregate(fille$Taille, by = list(fille$categ_age), FUN = "quantile", probs = 0.75) Taille_Q1_fille$Group.1 <- c(6.5, 9.5, 12.5, 15.5,18) Taille_Median_fille$Group.1 <- c(6.5, 9.5, 12.5, 15.5,18) Taille_Q3_fille$Group.1 <- c(6.5, 9.5, 12.5, 15.5,18) ggplot(fille) + aes(x = Age, y = Taille) + geom_point(shape = 'bullet', size = 1.5, color = "gray52") + theme_minimal() + theme(plot.title = element_text(size = 20L, hjust = 0.5)) + geom_line(data = Taille_Q1_fille, aes(x = Group.1, y = x), col = "dodgerblue3", lwd = 1) + geom_line(data = Taille_Median_fille, aes(x = Group.1, y = x), col = "firebrick1", lwd = 1) + geom_line(data = Taille_Q3_fille, aes(x = Group.1, y = x), col = "darkgreen", lwd = 1) + labs(title = "Observation du 1er, 3eme quartile et de la médiane de tailles chez les filles (quartile)", x = "Age (en années décimales)", y = "Taille (en cm)") #Classe d'age par pays fille_Fiji <- fille[fille$Pays == "Fiji",] fille_Swaziland <- fille[fille$Pays == "Swaziland",] fille_Fiji$categ_age <- cut(fille_Fiji$Age, breaks = c(5,8,11,14,17,max(fille_Fiji$Age))) Taille_Q1_fille_Fiji <- aggregate(fille_Fiji$Taille, by = list(fille_Fiji$categ_age), FUN = "quantile", probs = 0.25) Taille_Median_fille_Fiji <- aggregate(fille_Fiji$Taille, by = list(fille_Fiji$categ_age), FUN = "quantile", probs = 0.5) Taille_Q3_fille_Fiji <- aggregate(fille_Fiji$Taille, by = list(fille_Fiji$categ_age), FUN = "quantile", probs = 0.75) Taille_Q1_fille_Fiji$Group.1 <- c(6.5, 9.5, 12.5, 15.5,18) Taille_Median_fille_Fiji$Group.1 <- c(6.5, 9.5, 12.5, 15.5,18) Taille_Q3_fille_Fiji$Group.1 <- c(6.5, 9.5, 12.5, 15.5,18) ggplot(fille_Fiji) + aes(x = Age, y = Taille) + geom_point(shape = 'bullet', size = 1.5, color = "gray52") + theme_minimal() + theme(plot.title = element_text(size = 20L, hjust = 0.5)) + geom_line(data = Taille_Q1_fille_Fiji, aes(x = Group.1, y = x), col = "dodgerblue3", lwd = 1) + geom_line(data = Taille_Median_fille_Fiji, aes(x = Group.1, y = x), col = "firebrick1", lwd = 1) + geom_line(data = Taille_Q3_fille_Fiji, aes(x = Group.1, y = x), col = "darkgreen", lwd = 1) + labs(title = "Observation des écarts de tailles chez les filles des Fidji (quartile)", x = "Age (en années décimales)", y = "Taille (en cm)") fille_Swaziland$categ_age <- cut(fille_Swaziland$Age, breaks = c(5,8,11,14,17,max(fille_Swaziland$Age))) Taille_Q1_fille_Swaziland <- aggregate(fille_Swaziland$Taille, by = list(fille_Swaziland$categ_age), FUN = "quantile", probs = 0.25) Taille_Median_fille_Swaziland <- aggregate(fille_Swaziland$Taille, by = list(fille_Swaziland$categ_age), FUN = "quantile", probs = 0.5) Taille_Q3_fille_Swaziland <- aggregate(fille_Swaziland$Taille, by = list(fille_Swaziland$categ_age), FUN = "quantile", probs = 0.75) Taille_Q1_fille_Swaziland$Group.1 <- c(6.5, 9.5, 12.5, 15.5,18) Taille_Median_fille_Swaziland$Group.1 <- c(6.5, 9.5, 12.5, 15.5,18) Taille_Q3_fille_Swaziland$Group.1 <- c(6.5, 9.5, 12.5, 15.5,18) ggplot(fille_Swaziland) + aes(x = Age, y = Taille) + geom_point(shape = 'bullet', size = 1.5, color = "gray52") + theme_minimal() + theme(plot.title = element_text(size = 20L, hjust = 0.5)) + geom_line(data = Taille_Q1_fille_Swaziland, aes(x = Group.1, y = x), col = "dodgerblue3", lwd = 1) + geom_line(data = Taille_Median_fille_Swaziland, aes(x = Group.1, y = x), col = "firebrick1", lwd = 1) + geom_line(data = Taille_Q3_fille_Swaziland, aes(x = Group.1, y = x), col = "darkgreen", lwd = 1) + labs(title = "Observation des écarts de tailles chez les filles de l'Eswatini (quartile)", x = "Age (en années décimales)", y = "Taille (en cm)") ggplot(fille) + aes(x = Age, y = Taille) + geom_point(shape = 'bullet', size = 1.5, color = "gray52") + theme_minimal() + theme(plot.title = element_text(size = 20L, hjust = 0.5)) + geom_line(data = Taille_Median_fille_Fiji, aes(x = Group.1, y = x), col = "blue", lwd = 1) + geom_line(data = Taille_Q3_fille_Swaziland, aes(x = Group.1, y = x), col = "red", lwd = 1) + labs(title = "Comparaison des tailles du 1er quartile chez les fidjiennes \net 3ème quartile chez les swazies", x = "Age (en années décimales)", y = "Taille (en cm)") #model predictif ggplot(fille_Fiji) + aes(x = Age, y = Taille) + geom_point(shape = "bullet", size = 1.5, color = "#5DA5DA") + theme_minimal() + theme(plot.title = element_text(size = 20L, hjust = 0.5)) + geom_line(data = data.frame(age_values_fiji, preticted_height_girls_fiji1), aes(x = age_values_fiji, y = preticted_height_girls_fiji1), col = "red", lwd = 1) + geom_line(data = data.frame(age_values_fiji, preticted_height_girls_fiji2), aes(x = age_values_fiji, y = preticted_height_girls_fiji2), col = "purple", lwd = 1) + geom_line(data = data.frame(age_values_fiji, preticted_height_girls_fiji3), aes(x = age_values_fiji, y = preticted_height_girls_fiji3), col = "orange", lwd = 1) + geom_line(data = data.frame(age_values_fiji, preticted_height_girls_fiji4), aes(x = age_values_fiji, y = preticted_height_girls_fiji4), col = "green", lwd = 1) + labs(title = "modèles predictifs sur la taille des filles \ndes Fidji en fonction de l'âge", x = "Age (en années décimales)", y = "Taille (en cm)") ggplot(fille_Swaziland) + aes(x = Age, y = Taille) + geom_point(shape = "bullet", size = 1.5, color = "#F15854") + theme_minimal() + theme(plot.title = element_text(size = 20L, hjust = 0.5)) + geom_line(data = data.frame(age_values_Swaziland, preticted_height_girls_Swaziland1), aes(x = age_values_Swaziland, y = preticted_height_girls_Swaziland1), col = "blue", lwd = 1) + geom_line(data = data.frame(age_values_Swaziland, preticted_height_girls_Swaziland2), aes(x = age_values_Swaziland, y = preticted_height_girls_Swaziland2), col = "purple", lwd = 1) + geom_line(data = data.frame(age_values_Swaziland, preticted_height_girls_Swaziland3), aes(x = age_values_Swaziland, y = preticted_height_girls_Swaziland3), col = "black", lwd = 1) + geom_line(data = data.frame(age_values_Swaziland, preticted_height_girls_Swaziland4), aes(x = age_values_Swaziland, y = preticted_height_girls_Swaziland4), col = "green", lwd = 1) + labs(title = "modèles predictifs sur la taille des filles \nde l'Eswatini en fonction de l'âge", x = "Age (en années décimales)", y = "Taille (en cm)")